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RENEWAL REMINDER
If  you  are  interested  in  joining  ISBA (a  newly 
formed  international  society  which  interfaces 
between Bayesian  methods,  and  a  spectrum of 
scientific  areas)  then  please  send  your  name 
affiliation,  address,  and E-mail  address  together 
with your annual membership fee of $25 to:

Prof. Gordon M. Kaufman, Treasurer, ISBA
MIT School of Management
Room 53-375
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

ANNOUNCEMENT

Secretary  Michel  Mouchart,  and  a  nominating 
committee,  appointed  at  the  San  Francisco 
Meeting are still collecting a slate of nominees for 
our first democratically elected Board.  You will be 
contacted with a ballot when the Editors receive 
the slate.

FROM OUR MAILBAG
The joint  proceedings volume containing papers 
presented at the First World Meeting of ISBA and 
at  the  ASA  Section  on  Bayesian  Statistical 
Science Sessions in San Francisco, August 1993, 
will  be  published  by  the  American  Statistical 
Association.

The  following  are  two  editorials  concerning  the 
establishment of a Bayesian journal.  Opposed is 
Dennis Lindley, in favor is Arnold Zellner.

Against A Bayesian Journal

Suppose that a person is in favor of action 
A  but  faces  a  democratic  assembly  whose 
permission is needed before they can act.  One 
procedure is to put A to the vote; if it is rejected, to 
put  it  again  later  (preferably  when  some 
democrats opposed to A are absent) and repeat 
until  A is passed.  There is a simple theorem in 
probability  to  show that,  under  a  wide range of 
conditions,  this  procedure  will  terminate  by 
acceptance with probability one.  This is what has 

happened  in  ISBA  over  A,  the  creation  of  a 
Bayesian journal.

Please allow me to state the case against 
A,  since  it  was  inadequately  put  in  ISBA 
newsletter #2.  Bayesian statistics is not  part of 
statistics, in the way that say multivariate analysis 
is.  It is a way of looking at the whole of statistics. 
For  example,  there  is  a  Bayesian  approach  to 
multivariate  problems.   What we,  as  Bayesians, 
have  to  do  is  to  persuade  statisticians  of  the 
superiority of our viewpoint over others.  To create 
a  separate  journal  would  defeat  this  objective 
because frequentists would argue that they need 
not consult it since it is not in their field; just as the 
multivariate  expert  will  sensibly  not  read  a 
nonparametric journal.  In this way, non-Bayesians 



will not be exposed to our ideas and hence will not 
appreciate  them.   Acceptance  of  the  Bayesian 
paradigm  by  the  multivariate  expert  is  likely  to 
come through them seeing that their task can be 
better  performed  by  that  method.   To  create  a 
separate  Bayesian  journal  would  deny  us  this 
exposure and delay acceptance of  the coherent 
view.   Most  editors  are  tolerant  of  Bayesian 
papers  of  high  quality;  some  are  themselves 
Bayesians.   Publication  in  general  journals  is 
practicable.

Journals  are  created  for  the  good  of 
science, not to publish your friend's papers.  The 
good of  Bayesian statistics is not served by the 
creation of a specialist journal

Dennis V. Lindley
2 Periton Lane
Minehead
Somerset TA24 8AQ
United Kingdom

In Favor of a Bayesian Journal

While attending the excellent Symposium 
on  Exploration  of  the  Informational  Aspects  of 
Bayesian Statistics in Japan in December, 1993, 
Seymour  Geisser,  Jim Press,  Jim Berger,  Kunio 
Tanabe,  Dale  Poirier,  Malay  Ghosh,  John 
Geweke,  Herman  Van  Kijk,  Hajime  Wago, 
Wolfgang  Polasek,  Arnold  Zellner  and  others 
discussed the creation of  a Journal  of  Bayesian 
Analysis (JBA).  Several believed that for ISBA to 
be viable it would have to provide members with a 
journal.  It was agreed that the journal should be a 
broad one covering general scientific methodology 
and  foundational,  theoretical  and  applied 
Bayesian  analyses  in  all  areas  of  science  and 
application.   Also,  special  issues  devoted  to 
papers  with  a  common theme will  be published 
under the direction of invited guest editors.  The 
topics covered in the invited papers sessions at 
the  ISBA Meeting  in  San  Francisco  and at  this 
Symposium  in  Japan  would  be  ideal  for  the 
journal and special issues.  To make the journal 
effective,  it  was  agreed  that  there  be  a  large 
international editorial board.

Many at the meeting in Japan volunteered 
to  serve on the editorial  board.   Also,  Seymour 
Geisser,  who was requested  at  the  ISBA board 
meeting in San Francisco to look into the journal 
issue,  suggested in alternative name, Journal  of 
Bayesian  Sciences  (JOBS)  rather  than  JBA. 
Please  write  to  him  (School  of  Statistics, 
University of  Minnesota,  Minneapolis,  Minnesota 
55455,  USA 

(GEISSER@UMNSTAT.STAT.UMN.EDU) or to me 
(Grad.  Sch.  of  Bus.  U.  of  Chicago,  Chicago,  IL 
60637,  USA  Fax  (312)702-0458  E-mail: 
FAC_AZELLNER@GSBACD.UCHICAGO.EDU) 
to  express  your  views  and/or  willingness  to 
participate.  The journal issue will be considered 
further  at  the  next  ISBA  meeting  in  Alicante, 
Spain, June 10-11, 1994.  See you there!

Arnold Zellner
Grad. Sch. of Business
Univ. of Chicago
1101 East 58th Street
Chicago, IL  60637

INTERNATIONAL  SYMPOSIUM  ON 
EXPLORATION  OF  INFORMATIONAL 
ASPECTS  OF  BAYESIAN  STATISTICS,  held 
December 19-23, 1993 in Yamanashi, Japan

The symposium consisted of a series of papers on 
a  variety  of  topics.   It  was  organized  to  honor 
Hirotsugu Akaike and the Institute of Statistical

        Mathematics.

Models,  Prior  Information  and  Bayesian 
Analysis
Arnold Zellner, University of Chicago

Structural Shifts in a State-Space Model with 
Unknown Number of Join Points
Hiroki Tsurumi, Rutgers University

Prior Beliefs About Fit
Dale J. Poirier, University of Toronto, Canada

Bayesian Considerations of Spatial Prediction
Noel A.C. Cressie, Iowa State University

A  Bayesian  Approach  to  the  Estimation  of  
Upper  Crustal  Rock  Densities  Using  Gravity  
Data
Yasuaki Murata, Geological Survey of Japan

Defection of  Anomalous Changes of  Ground 
Water Level Related to Earthquakes
Norio Matsumoto, Geological Survey of Japan

Nonregular Asymptoyic Bayesian Theory
Kei Takeuchi, University of Tokyo, Japan

On the Strategy for the Survival  of Bayesian 
Statistics
Hirotsugu  Akaike,  Institute  of  Statistical 



Mathematics, Japan

Reference Distributions in Model Choice
Jose M. Bernardo, Generalitat Valenciana, Spain

Learning  Curves,  Generalization  Errors  and 
Model Selection
Shunichi Amari, University of Tokyo, Japan

Recent Developments Concerning the Intrinsic  
Bayes Factor for Model Selection
James O. Berger, Purdue University

On  the  Shape  of  the  Likelihood/Posterior  in 
Cointegration Models
Herman K. van Dijk

Modeling  Volatile  Economic  Time  Series  by 
Gibbs Sampling
Wolfgang  Polasek,  University  of  Basel, 
Switzerland

Bayesian  Inference  in  Reduced  Rank 
Regression Models
John Geweke, University of Minnesota

Two Computational Methods of Evaluation of 
Bayesian Models
Yoshihiko  Ogata,  Institute  of  Statistical 
Mathematics, Japan

Geodesic  Data  Inversion  Using  a  Bayesian 
Information Criterion
Mitsuhiro Matsu'ura

Time Series  Analysis  of  Groundwater  Radon 
Using Stochastic Differential Equations
Tomoyuki  Higuchi,  Institute  of  Statistical 
Mathematics,  Japan  and  George  Igarashi, 
Hiroshima University, Japan

Smoothness  Priors  Multivariate 
Autoregressive Time Series Modeling
Will Gersch, University of Hawaii

Markov Chain Monte Carlo Methods and Their 
Application to Statistics 
Yukito  Iba,  Institute  of  Statistical  Mathematics, 
Japan

Bayesian Analysis of Time-Varying-Parameter 
Models:  A Gibbs Sampling Approach
Chung-Ki Min, George Maison University

Rank  Selection,  Soft  Optimization,  and 
Heuristics
Yu-Chi Ho, Harvard University

Bayesian Analysis of Co-Integration
Hajime Wago, Toyama University, Japan

Estimating  Cofactors  of  Multivariate 
Nonstationary  Time  Series   --  A  Bayesian 
Approach
Sadao  Naniwa,  Kumamoto  University  of 
Commerce, Japan and Makio Ishiguro, Institute of 
Statistical Mathematics, Japan

Limit  Cycle  and  Multistep  [Prediction  in  an 
Exponential  Autoregressive  Model  for 
Nonlinear Time Series
Nobuhiko Terui, Yamagata University, Japan

Simultaneous Estimation of Structural Change 
and  order  of  an  Autogressive  Model  by 
Akaike's Predictive Likelihood Approach
Hideo Kozumi, Kobe University, Japan

On Extending a Stepwise Bayes Procedure
Eiichiro Funo, Kantogakuin University, Japan

Learning and Model Selection
Tetsuya  Takahaki,  Institute  of  Statistical 
Mathematics, Japan

A  Monte  Carlo  Filtering  and  Smoothing 
Method  of  Nonlinear  Non-Gaussian  Time 
Series Models
Genshiro  Kitagawa,  Institute  of  Statistical 
Mathematics, Japan

Bayesian  Analysis  of  Lymphatic  Spreading 
Patterns in Cancer of the Thoracic Esophagus
Akifumi Yafune, Kitasato Institute and University of 
Tokyo, Japan

Many  Nuisance  Parameters,  Inconsistent 
MLE's and Hierarchical Bayes Solutions
Malay Ghosh, University of Florida

Bayesian  (or  Nonbayesian)  Seasonal 
Adjustment
Tohru Ozaki,  Institute of  Statistical  Mathematics, 
Japan

A Smooth Estimation of the Prior Distribution 
in  a  Bayesian  Model  -  An  Use  of  EIC  (an 
Extended Information Criterion)
Makio  Ishiguro,  Institute  of  Statistical 
Mathematics, Japan and Akifumi Yafune, Kitasato 
Institute and University of Tokyo, Japan

The de Finetti Transform
S. James Press, University of California



Bayesian Interim Analysis
Seymour Geisser, University of Minnesota

New  Approaches  to  Bayesian  Inference  on 
Cycles in Time Series
Michael West, Duke University

Bayesian  Simultaneous  Estimation  in  Factor 
Analysis Model
Kazuo Shigemasu, Tokyo Institute of Technology, 
Japan

Bayesian Analysis of Seasonal Economic Data
Yasuhito  Yoshizoe,  Aoyama  Gakuin  University, 
Japan

Origin of Distributions and their Development
Tadashi  Matsunawa,  Institute  of  Mathematics, 
Japan

State-Space  Modeling  of  Switching  Time 
Series
Fumiyasu Komaki, University of Tokyo, Japan

Nonstationary Time Series Analysis via Time 
Varying Coefficient VAR Model
Xing-Qi Jiang, Asahikawa University, Japan

How  to  Cope  with  Improper  Priors  and  Ill-
Conditioned  Posterior  Likelihoods  in 
Numerically  intensive  Nonparametric  
Bayesian Methods
Kunio Tanabe, Institute of Mathematics, Japan

The Second Biennial Workshop 

The  second  biennial  workshop  "Bayesian 
Statistics  in  Science  and  Technology:  Case 
Studies" was held at Carnegie Mellon University in 
Pittsburgh,  Pennsylvania,  USA,  9-11,  October 
1993.   The  workshops  emphasize  substantive 
scientific  applications  of  Bayesian  statistics, 
allowing 2 1/2 hours for each invited paper so that 
background  material  may  be  adequately 
explained.   Contributed  papers  are  screened  to 
make  sure  they  are  mainly  concerned  with  an 
application,  rather  than  presenting  some 
methodology which is illustrated by an example. 
The  goal,  throughout,  is  to  advance  the 
application areas while providing concrete cases 
that may challenge existing techniques or provoke 
reflection  on  the  strengths  and  limitations  of 
current Bayesian statistical practice. 

The four invited papers, all on the general theme 
of biomedical applications, were: 

Accurate  Restoration  of  DNA Sequences, by 
G.A. Churchill, Cornell University;

Elicitation,  Monitoring,  and  Analysis  for  an 
AIDS Clinical Trial, by B.P. Carlin, T.A. Louis, and 
F.S. Rhame, University of Minnesota;

A  Bayesian  Model  for  Organ  Blood  Flow 
Measurement  with  Radiolabelled 
Microspheres, by E.N. Brown and A. Sapirstein, 
Massachusetts  General  Hospital  and  Harvard 
Medical  School;  and  Incorporating  Prior 
Information into the Reconstruction of Single 
Photon

Emission  Computed  Tomography  Images, by 
V.E.  Johnson,  J.E.  Bowsher,  and  T.  Turkington, 
Duke University.

There  were  two  invited  discussants  for  each 
paper, and some provided alternative analyses of 
the data.  The contributed poster session featured 
fourteen  papers  in  the  areas  of  highway 
engineering, avalanche forecasting, medicine and 
health care,  finance,  fisheries management,  and 
chemistry.

The  organizers  of  the  workshop  are  editing  a 
proceedings  volume  that  will  contain  the  four 
invited  papers  with  discussions  and  selected 
contributed papers.  The volume will be published 
by  Springer-Verlag.   The  proceedings  volume 
from  the  first  Case  Studies  workshop,  held  in 
1991,  was  published  by  Springer  this  past 
summer, with the title "Case Studies in Bayesian 
Statistics"  (Lecture  Notes  in  Statistics,  Volume 
83),  edited  by  C.  Gatsonis,  J.S.  Hodges,  R.E. 
Kass,  and  N.D.  Singpurwalla.   This  volume 
features  the  five  invited  papers  from  the  first 
workshop,  with  prepared  discussions,  nine 
contributed papers, and a closing discussion.  The 
volume  is  intended  for  classroom  use,  with  an 
index featuring models and prior distributions and 
complete data sets for three of the papers.

The  October  1993  workshop  was  held  in 
conjunction  with  the  second  Morris  H.  DeGroot 
Memorial Lecture in the Department of Statistics 
at  Carnegie  Mellon,  which  was  delivered  by  A. 
Philip Dawid.

Preparations are underway for the third workshop, 
to  be  held  in  October  1995  at  Carnegie-Mellon 



University.   A  formal  call  for  abstracts  to  be 
considered  as  invited  papers  will  go  out  in  late 
1994.   However,  the  organizers  (Constantine 
Gatsonis,  Jim  Hodges,  Rob  Kass,  and  Nozer 
Singpurwalla)  would  like  to  hear  of  ongoing 
projects that might lead to invited papers as soon 
as  possible.  Those  with  suggestions,  and 
volunteers, should contact us.  We are especially 
interested  in  mature  applications  of  Bayesian 
statistics,  the only conditions at  this  point  being 
that  the  statistician  must  have  been  an  integral 
member  of  the  team  doing  the  work,  and  that 
Bayesian methods must  be used explicitly.   For 
more information, call Rob Kass at 412-268-8723 
or send e-mail to kass@stat.cmu.edu.

The  organizers  gratefully  acknowledge  the 
support given the second Case Studies workshop 
by  the  National  Science  Foundation,  the  Army 
Research  Office,  and  the  National  Institutes  of 
Health.

Probability in Outline

Anthony J.M. Garrett
Byron's Lodge, 63 High Street
Grantchester
Cambridge CB3 9NR, England

ABSTRACT:  Probability  theory  is  outlined 
according to the Bayesian viewpoint,  that  it  is  a 
theory of logical inference founded on criteria of 
consistency.   No  knowledge  of  probability  is 
assumed, though a small degree of mathematical 
facility  and  some familiarity  with  the  calculus  of 
propositions will  be helpful.   Problems arising in 
some other probabilistic viewpoints are set out.

More than two centuries after it  became 
quantitative,  and despite  the pioneering work  of 
Laplace, probability is still  a contentious area.  I 
shall  present  what  is  called  the  objective 
Bayesian - usually just called Bayesian view, and 
state  the  justification  for  adopting  it  over  other 
pictures.

Consider  the  problem of  how to  reason 
about propositions, meaning statements which are 
either  true  of  false,  when  we  have  insufficient 
information  to  be  certain  which.   It  is  then 
appropriate to consider the notion of  strength of  
belief: we believe more strongly that it is raining in 
India at the height of the monsoon season, than 
that it is raining in the Gobi desert, even though 
we are not in contact with on-the-spot observers 
who can give us weather  reports.   This  idea of 
strength of belief is useful to us because we have 

the capacity for belief.  Please note that I have not 
yet  used  the  word  'probability'  or  made  any 
presumption about it.

We  now  consider  whether  we  can 
construct  a  theory  of  how  strongly  we  should 
believe that a proposition is true, given what we 
know about it:   a quantitative theory.  You might 
think that  anything to do with belief  must  be so 
hazy as to be unquantifiable, because anyone can 
believe  anything,  to  any  degree.   But  not 
consistently:  as  soon  as  the  'conditioning' 
propositions - that we are in a desert, say - are 
given,  assignment  of  strength  of  belief  in  rain 
takes place by a well-defined set of rules, yielding 
the same result whether implemented by a human 
brain or an electronic computer.  We shall shortly 
set up those rules from consistency requirements. 
(Of  course,  the  computer  does  not  'believe'  in 
anything because it does not have that capacity; 
but  it  can  calculate  the  number  perfectly  well.) 
Confusion  arises  because  different  individuals 
often  possess  different  conditioning  information, 
and  so  use  these  rules  to  assign  a  different 
strength  of  belief  to  the  event.   For  example, 
someone else in the desert  might have heard a 
storm  warning  broadcast,  and  believe  more 
strongly in rain.  But the same rules of reasoning 
are in use, and we recognize intuitively that this a 
sensible revision to make.

There are rules of assigning strengths of 
belief,  and rules of  manipulating them, so as to 
incorporate further information, for example.  The 
assignment  principle  is  maximum  entropy,  to 
which  we shall  return.   The  manipulatory  rules, 
denoting the strength of belief by p, are known as 
the product rule,

p(AB C) = p(A BC)P(B C),∣ ∣ ∣

and the sum rule,

p(A C) + p(Ā C) = 1.∣ ∣

(Though I am borrowing the notation of probability 
theory,  I  have  still  made  no  statements  about 
probability itself.)  Since strength of belief is not a 
physical quantity, the rules which it obeys cannot 
be field-tested in the same way as Newton's laws. 
Rather it  is  a theory of  logic,  and accordingly it 
must  be  internally  consistent  in  its  construction. 
This condition of consistency suffices, happily, to 
give the product and sum rules.  Suppose that we 
do not know the product rule and write p(AB C) as∣  
an unknown function of the probabilities P(A BC)∣  
and  p(B C)  alone.   (No  other  inequivalent∣  
combination makes any sense.)   This relation is 



then  applied  twice,  to  decompose  the  belief-
strength  of  the  logical  product  of  three 
propositions  int  belief-strengths  of  single 
propositions.  The decomposition can be done in 
two different ways but, since the logical product is 
associative, the results must be the same.  This 
condition  sets  up  a  functional  equation  for  our 
unknown function  whose solution  is  the  product 
rule.  The sum rule is correspondingly derived by 
exploiting  associativity  os  the  logical  sum  of 
propositions; the logical sum is related to negation 
by the  logical  relation Ā +  = Ā.   In  fact,  if  we 
associate  a  number  with  every  conditional 
proposition,  then the sum and product rules are 
just  the numerical  calculus corresponding to the 
Boolean  calculus  of  the  propositions.   The sum 
and product rules are derived in this manner by 
the physicist R.T. Cox in 1946.

A  theory  of  belief-strength  is  precisely 
what is needed in order to solve the problems with 
which  'probability  theory'  is  concerned.   For 
example,  in  estimating  the  value  of  a  physical 
parameter from noisy measurements, we want to 
know how strongly to believe that the parameter 
takes certain values.  The theory tells us this.

People  who  call  themselves  "objective 
Bayesians' take belief-strength and probability to 
the  same  thing,  and  use  the  terms 
interchangeably.  This is because statements like 
"From what I know, I strongly believe it will rain" 
and "From what I know, I way it will very probably 
rain"  mean  the  same  thing  to  most  people. 
Objective  Bayesians  are  satisfied  with  the  idea 
that the more strongly you believe in something, 
the greater is the probability you will give it.  Even 
if  you  start  by  accepting  only  a  vague  intuitive 
connection  between  strength  of  belief  and 
probability,  Cox's  consistency  argument  forces 
these both to obey the same rules, known as 'the 
law of probability' and given above.  Consequently 
it  doesn't  matter  if  you prefer  a  different  term - 
such  as propensity or likeliness or anything else - 
to express the idea of belief-strength.  The rules 
are the same.

Other people claim that probability has a 
different  meaning  from  belief-strength,  or  even 
that there is more than one meaning of the word 
'probability.'   But  the  Bayesian  belief-strength 
theory is always applicable to tackle the problems 
- such as noisy parameter estimation - which they 
consider.   Accordingly  it  can  be  handed  over, 
changing  back  the  word  probability to  belief-
strength to  satisfy  them but  leaving the  content 
intact.   The  belief-strength  theory  is  the  most 
general known; no alternative viewpoints (such as 

fuzzy logic) have done anything to extend the type 
of  problems  accessible.   By  contrast,  the  most 
influential non-Bayesian school, called frequentist, 
is  more  restricted  than  the  Bayesian  in  the 
problems it aims to treat.  We shall also suggest 
that it  is logically flawed.  (Incidentally there are 
differing  shades  of  the  word  'Bayesian,'  and  a 
useful  test  is to see whether Cox's derivation is 
referred to.)

In  summary,  probability  theory  is  a 
uniquely  consistent  theory  of  logic  --  inductive 
logic - used in reasoning about propositions which 
are either true or false, but where we do not have 
the information to be certain which.  In particular, it 
is as applicable to the past as it is to the future; 
what,  for  example,  is  the  probability,  based  on 
expert study, that a particular painter and not his 
pupils  painted  a  given  Old  Master?   All 
probabilities  (belief-strengths)  are  conditional; 
statements  such  as  "the  probability  that  a  pupil 
painted  it  is  such-and-such"  are  incomplete 
without stating the evidence brought to bear - the 
conditioning propositions.  Propositions of the type 
"the tree is between height  h and  h + d" enable 
quantitative  and  continuous  parameters  to  be 
handled.

Probability  theory  cannot  tell  us  which 
propositions or hypothesis to entertain in relation 
to each other.  It enables us to relate propositions 
of our own choosing.

An important consequence of the product 
and sum rules, and of commutativity of the logical 
product, is Bayes' theorem, used in incorporating 
a further conditioning proposition.  If we learn that 
proposition  B  is  true,  how  does  this  affect  our 
knowledge about proposition A, given at all stages 
the truth of proposition C?  We wish to find the 
'posterior'  probability  p(A BC)  from  the  'prior'∣  
probability p(A C).  These are related by∣

p(A BC) = p(A C)p(B AC)/p(B C).∣ ∣ ∣ ∣

In this context p(B AC) is known as the likelihood.∣  
The quantity p(B C) in the denominator may now∣  
be expanded using the marginalising rule, which 
is a consequence of the sum and product rules; 
Bayes' theorem is the result.  The denominator is

p(B C) = p(BA C) + p(BĀ C)

or

p(B C) = p(B AC)p(A C) + p(B ĀC)p(Ā C).

If  the likelihoods p(B AC) and p(B ĀC), and the 



prior probability p(A C) (and hence it complement, 
p(Ā C),  are  known, the posterior  probability  p(A 
BC) can be worked out.  It is guaranteed from the 
construction of the sum and product rules that the 
result  of  incorporating  two  or  more  items  is 
dependent --  as it  must be -- only on their  joint 
logical  product  and  not  on  their  order  of 
incorporation.   Bayes'  theorem  is  applicable  in 
estimating  physical  parameters  from  noisy 
measurements  where  the  statistics  of  the  noise 
are given.

Bayesian updating is also used in inverse 
reasoning, relating the propositions A and B.  For 
example,  if  we  are  in  an  unfamiliar  region 
(proposition  C)  and  we  find  flourishing  a  plant 
which is known to prefer a humid climate, we tend 
to believe the local climate is humid.  Here, A is 
"the climate is humid" and B is "the plant grows 
well"; it is readily shown that p(A BC) > p(A C) if 
p(B  AC)  >  p(B  ĀC).   Evidently,  the  rules  of 
probability encapsulate much that is intuitive; the 
aim of probability theory is to make this precise.

The  main  non-Bayesian  view  of 
probability,  dominant  for  a  century  and  still 
common  today,  holds  that  it  is  proportion,  or 
relative frequency; the probability of heads in coin 
tossing is  taken to be the ratio  of  heads to the 
number  of  tosses,  as  this  number  increases 
without bound.  This is the  frequentist view.  Its 
supporters  point  out  (correctly)  that  proportions, 
on a Venn diagram, satisfy the sum and product 
rules.  But trials with coins, dice and so on need to 
be  'random',  and  this  is  not  a  clearly  defined 
concept.   On  closer  examination,  what  writers 
mean by random is unpredictable; but by whom? 
A  table  of  'random'  numbers  (or,  in  partial 
recognition  of  the  problem,  "pseudo-random 
numbers') is not unpredictable by somebody who 
knows about the algorithm used to generate it; nor 
is  the landing of  a die to somebody who has a 
timed  sequence  of  photographs  of  it  in  flight. 
Randomness, or stochasticity, should not be seen 
as something that is intrinsic to a table of numbers 
or a physical system; prediction depends on the 
information one has about these - as Bayesians 
recognize.   Like  subjective and  objective (and 
perhaps even probability), the word random is so 
laden  with  potential  misunderstanding  that  it  is 
better avoided.

There  are  further  problems  with  the 
frequentist  view  of  probability.   In  practice  one 
never  has  an  infinity  of  trials,  and  the  finite 
number  recorded  comprise,  in  a  big  enough 
space, a single event.  In order to cope with one-
off  events,  frequentists  invent  imaginary 

ensembles  of  alternative  outcomes  which  might 
have happened (but didn't) in a 'random' trial, and 
use  a  terminology  which  suggests  that  these 
outcomes are real; that a parameter whose value 
is fixed (but unknown) actually takes many values! 
Frequentists also accept prior information only in 
the form of proportions; yet, you would not trust a 
doctor  who  stated  that  you  should  have  an 
operation because 70% of patients showing your 
symptom needed it,  but  who refused  to  look  at 
your personal medical file.

These  criticisms  stand  alone.   But,  by 
adopting  the  Bayesian  viewpoint,  we  see  the 
trouble  more  clearly.   Proportion  is  a  physical, 
measurable  quantity;  its  value  can  be  used  as 
conditioning information in assigning a probability, 
but it is not itself a probability.  Applied in this way 
to  repeated  trials,  the  numerical  value  of 
probability  often  coincides  with  proportion;  but 
probability  remains  a  logical,  and  not  a 
measurable,  quantity.   Bayesians also recognize 
and use non-proportion prior information.

Because  frequentists  reject  the  use  of 
non-proportion  prior  information,  for  parameter 
estimation  from  logically  independent  noisy 
samples  they  use  not  Bayes'  theorem,  but  a 
variety of ad hoc techniques known collectively as 
sampling  theory.   (Logical  independence means 
that  knowledge  of  one  sample  value  does  not 
affect our knowledge of any other.)  In estimating 
a parameter θ from the sample values θ1, θ2, ..., 
and  conditioning  propositions  Ι,  sampling  theory 
sets up an 'estimator'  θ*(θ1,θ2 ...)  and takes the 
probability  density  P(θ  θ*,Ι)  proportional  to  P(θ 
θ,Ι).  Even if the estimator is a 'sufficient statistic' 
(meaning  that  the  data  enter  the  likelihood 
P(θ1,θ2... θ,Ι), which is equal from the product rule 
to P(θ1 θ,Ι)P(θ2 θ,Ι)..., only as a function of θ*), this 
procedure is in violation of Bayes' theorem, unless 
the prior probability density for θ is uniform.  If the 
estimator  is not  sufficient  the violation is worse. 
We  see  here  the  twin  problems  of  sampling 
theory: failure to incorporate prior information, and 
inequivalence  of  the  method  to  the  sum  and 
product rules.  These account for the preference 
of  one  estimator  over  another  in  particular 
problems (and for many 'paradoxes' in probability 
theory.)   The  divide  between  'statistics'  and 
statistical inference is also seen as a artificial one.

Turn  now  to  the  rules  for  assigning 
probability in the case of a quantitative variable, 
which  for  simplicity  we  take  at  this  stage  as 
discrete.   Its  values  each  have  unit  weighting 
('degeneracy') and are labelled by {i}.  The crucial 
idea is the information content of a distribution: a 



sharply  peaked  distribution for  a  parameter  is 
clearly  more  informative  than  a  broad  one,  and 
the limit in which all the probability is heaped on 
one  value  corresponds  to  certainty  about  the 
value of the parameter.  Supposing that we hold 
the  expression  for  the  information  content  of  a 
distribution,  probability  assignment  proceeds  by 
selecting that  particular  distribution,  out of  those 
consistent  with  whatever  constraints  are  given 
(such as the mean or  the variance),  having the 
least  information  content.   This  distributes  the 
probability as widely as possible.  Operationally, it 
is  a  routine  exercise  in  the  variational  calculus. 
The  idea  is  that  to  choose  a  more  informative 
distribution is to pretend to information we do not 
possess, and this somewhat abstract rationale in 
fact  fulfills  the  intent  of  codifying and  extending 
our intuition.

It remains to characterize the information 
content  of  a  distribution  pi.   This  was  done  by 
Claude Shannon, who took information content to 
be  the  complement  of  the  expected  number  of 
possibility-halving questions whose answers take 
us, from our current state of knowledge, to one of 
certainty in which the probability is all placed on a 
single possibility. It is conventional to work directly 
with this expected number of questions, which is 
known as the information  entropy,  S,  and takes 
the famous form

S[pi] = - Σ pilog2(pi).
             i 

Shannon's  expression  follows,  from  its 
interpretation,  by  partitioning  the  space  of 
outcomes  into  subspaces,  each  carrying 
probability equal to the sum of probabilities of the 
elements  within;  renormalizing  the  individual 
distribution in each subspace; and demanding that 
the information entropy of the original distribution 
equal  that  of  the  distribution  of  the  subspaces, 
plus  the  information  entropy  of  each 
subdistribution  weighted by the probability  of  its 
subspace.  Only this recipe is independent of the 
partitioning,  which  can  be  performed  in  many 
ways.  Again the criterion is one of consistency, 
and again it leads to a functional equation, whose 
solution  is  Shannon's  form.   Minimizing  the 
information  content  in  order  to  assign  a 
distribution  is  equivalent  to  maximizing  its 
complement, the information entropy - hence the 
principle  of  maximum entropy.   The  logarithmic 
form  ensures  non-negativity  of  the  resulting 
probabilities.   The  information  entropy  is  a 

minimum, of value zero, for the 'certainty' 

distribution,  and  is  a  maximum  for  the  uniform 
distribution in which equal probability is placed on 
each  outcome.   The  uniform  distribution  - 
probability 1/6 for each fact of a six-sided die -is 
therefore the distribution assigned in the absence 
of  constraints  (other  than  normalization),  as 
intuition  would  suggest,  and  it  underlies  all 
'combinatorial' theorems of probability theory.

Continuous spaces can be dealt  with as 
the limit of discrete ones.  The result is that we are 
now to maximize

- ∫ dxp(x)log[p(x)/m(x)],

where  m(x) is the measure on the space  {x}, the 
continuum analogue of degeneracy in the discrete 
case.  In the absence of constraints, the maximum 
entropy distribution is the normalized measure.  In 
ab initio continuum problems this distribution can 
often be found by symmetry arguments based on 
the  meaning  of  the  variables  -  furnishing  the 
measure for constrained problems.  For example 
the probability density for the angular location of a 
bead  on  a  circular  wire,  with  no  further 
information, is invariant under translation, and this 
condition  induces  a  functional  equation  for  the 
density  (the  measure)  whose  solution  is  a 
constant.

Fuller  details  of  these  ideas  about 
probability  are  contained  in  the  text  Rational  
Descriptions,  Decisions  and  Designs by  Myron 
Tribus (Pergamon, 1969).

Second Annual Meeting of ISBA

At the First Meeting of the International Society for Bayesian analysis in San Francisco, the membership 



voted to hold the Second Annual Meeting on June 10th and 11th, 1994, immediately following the Fith Valencia 
Meeting.  This ISBA meeting will include reports on applied and theoretical Bayesian analyses in the physical, 
biological  and  social  sciences.   Bayesians  in  astronomy,  physics,  geology,  biology,  medicine,  economics, 
psychology, sociology, law, business, government and other ares are invited to submit papers for presentation at 
the ISBA Alicante meeting.  The costs of attending (two complete days) are estimated to be:

Registration fee (members):   5 000 pesetas
(nonmembers): 10 000 pesetas

Accommodation and food (double): 20 000 pesetas
(single): 25 000 pesetas

Banquet(*)  5 000 pesetas

To ensure availability of the hotel at the above reduced rates we must know, as soon as possible if you plan to 
attend the ISBA meeting.  If we do not receive enough preregistration by then, alternative venues would have to 
be explored.

(*)The banquet will be on Thursday evening June 9, and will be joint Valencia Meeting - ISBA banquet.  Those 
attending the Valencia Meeting need not pay extra for the banquet.
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Second Annual Meeting of the International society for Bayesian Analysis
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Send to: M.J. Bayarri
Department of Statistics and O.R.
Universitat de Valencia
Av. Dr. Moliner 50
46100 Burjasot, Valencia
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